Übungsblatt 8

Abgabe: 14. Juni 2012

Aufgabe 8.1. Seien (\tilde{M}, \tilde{g}) und (M, g) zwei zusammenhängende, geodätisch vollständige Mannigfaltigkeiten, $\pi: \tilde{M} \to M$ eine lokale Isometrie (das heißt: für jedes $p \in \tilde{M}$ gibt es eine Umgebung $U \subset \tilde{M}$, so daß $\pi|_U$ eine Isometrie ist).

- (i) Zeigen Sie, daß π die **Hochhebungs-Eigenschaft** für Geodätische besitzt: Für jede Geodätische γ in M gibt es eine Geodätische $\tilde{\gamma}$ in \tilde{M} mit $\pi \circ \tilde{\gamma} = \gamma$. Zeigen Sie, daß π surjektiv ist.
- (ii) Sei $p \in M$, $\{\tilde{p}_i\} = \pi^{-1}(p)$ und ε so klein, daß die geodätischen Abstandsbälle $\mathbb{B}_{\varepsilon}(p_i)$ konvex sind und π eine Isometrie auf ihnen ist. Zeigen Sie: Alle $\mathbb{B}_{\varepsilon}(p_i)$ sind disjunkt. Schließen Sie, daß π eine Überlagerung ist.

Aufgabe 8.2. Sei (M,g) eine Riemannsche Mannigfaltigkeit und G eine Untergruppe der Diffeomorphismen $M \to M$, die **fixpunktfrei** und **eigentlich diskontinuierlich** auf M operiert, das heißt:

- (a) $f(p) \neq p$ für alle $f \in G \setminus \{id\}$.
- (b) Ist $A \subset M$ kompakt, so gibt es nur endlich viele $f \in G$ mit $A \cap f(A) \neq \emptyset$.

[War falsch, nämlich: »Sind $A, B \subset M$ kompakt, so schneiden sich B und der Orbit von A nur in endlich vielen Punkten.«]

Zeigen Sie, daß jeder Punkt $p \in M$ eine Umgebung U besitzt, so daß $f(U) \cap U = \emptyset$ für alle $f \in G \setminus \{\text{id}\}$ ist. Benutzen Sie das, um zu beweisen, daß M/G eine Mannigfaltigkeit und die Projektion $M \to M/G$ eine Überlagerung ist.

Aufgabe 8.3a. Sei $\{p,q\}$ Schläfli-Symbol einer Pflasterung mit $\frac{\pi}{p} + \frac{\pi}{q} \neq \frac{\pi}{2}$. Berechnen Sie den Flächeninhalt des Fundamentalbereiches.

Aufgabe 8.3b. Geben Sie alle möglichen Pflasterungen der \mathbb{S}^2 geometrisch und in Schläfli-Symbolen an.

Aufgabe 8.4. Sei S Triangulierung einer Sphäre (beispielsweise ein platonischer Körper). Erstellen Sie mit einer Geometrie-Software Ihrer Wahl Plots von f(S) für drei verschiedene differenzierbare Abbildungen $f: \mathbb{R}^3 \to \mathbb{R}^3$ mit f(p) = f(-p) und Df(p) invertierbar für alle $p \in S$. Möglich sind beispielsweise f(x,y,z) = (yz,xz,xy) [war fälschlicherweise f(x,y,z) = (yz,xz,yz)], die Römische Fläche von Steiner, oder $f(x,y,z) = (xz,yz,\frac{1}{2}(z^2-x^2))$, die Kreuzhaube.

Tip. In JAVAVIEW können Sie f interaktiv eingeben. Sie können aber auch selbst programmieren. Dafür eignet sich das sehr einfache PLY-Dateiformat für polygonale Flächen. Im Internet finden Sie fertige Triangulierung der platonischen Körper in diesem Dateiformat. PLY-Dateien können beispielsweise mit PARAVIEW dargestellt werden.