Übungsblatt 6

Abgabe: 31. Mai 2012

Aufgabe 6.1. Betrachten Sie die offene Einheitskreisscheibe in \mathbb{R}^2 , in Polarkoordinaten $\{(r,\varphi)\in[0;\infty[\times[0;2\pi[\},\text{ aber jetzt anstatt mit der euklidischen Metrik }g_{\text{eukl.}}=(\begin{smallmatrix}1&0\\0&r^2\end{smallmatrix})$ versehen mit der **Poincaré-Kreisscheiben-Metrik** [war $g=\frac{1}{1-r^2}g_{\text{eukl.}}$]

$$g = \frac{4}{(1-r^2)^2} g_{\text{eukl.}} = \frac{4}{(1-r^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}.$$

- (i) Skizzieren Sie ∂_r sowie ∂_{φ} , und berechnen Sie $|\partial_r|$ und $|\partial_{\varphi}|$.
- (ii) Berechnen Sie $\nabla_{\partial_r}\partial_r$, $\nabla_{\partial_r}\partial_{\varphi}$, $\nabla_{\partial_{\varphi}}\partial_r$, $\nabla_{\partial_{\varphi}}\partial_{\varphi}$ und $\nabla_V W$ für $V = r\partial_r + r^2\partial_{\varphi}$ und $W = \varphi\partial_r + r\varphi\partial_{\varphi}$. Zwei davon sind gleich warum?

Aufgabe 6.2. Wir betrachten die obere Halbebene $\{(x,y) \in \mathbb{R} \times]0; \infty[\}$ mit der **Poincaré-Halbebenenmetrik** $g = \frac{1}{y^2}g_{\text{eukl.}} = \frac{1}{y^2}(dx^2 + dy^2)$. Sei γ eine zur Bogenlänge proportionale Parametrisierung von $\{(x_0,y) \mid y \in]0; \infty[\}$ für festes x_0 .

- (i) Skizzieren Sie die Situation und zeigen Sie, daß γ eine Geodätische ist.
- (ii) Zeigen Sie, daß $J = \partial_x$ ein Jacobi-Feld entlang γ ist.

Interessant ist hier, daß $|J| \to \infty$ für $y \to 0$. Das bedeutet, daß die Geodätischen für verschiedene x_0 , obwohl sie in »konstantem Abstand« zu verlaufen scheinen, für $y \to 0$ auseinander- und für $y \to \infty$ zusammenlaufen.

Aufgabe 6.3. Sei (M,g) eine Riemannsche Mannigfaltigkeit mit einer Geodätischen $\gamma:I\to M$. Ein Jacobi-Feld J entlang γ mit $J\perp\dot{\gamma}$ überall heißt ein **normales** Jacobi-Feld entlang γ . Zeigen Sie, daß $\ddot{J}+CJ=0$ für jedes normale Jacobi-Feld, wenn (M,g) konstante Schnittkrümmung $C\in\mathbb{R}$ besitzt.

Aufgabe 6.4. Sei r > 0. Zeigen Sie (kurz), daß die gewöhnlichen Differentialgleichungen $\ddot{u} + r^2 u = 0$ und $\ddot{v} - r^2 v$ mit Anfangswerten u(0) = v(0) = 0 sowie $\dot{u}(0) = \dot{v}(0) = r$ die Lösungen

$$u(t) = \sin rt$$
 und $v(t) = \sinh rt$

besitzen. Sei nun J ein normales Jacobi-Feld mit J(0)=0. Zeigen Sie $|J(t)|_g=\lambda u(t)$ für $C=r^2>0$ bzw. $|J(t)|_g=\lambda v(t)$ für $C=-r^2<0$. Was ist λ ?

Aus diesem Grunde sagt man, daß kleinere Schnittkrümmung die Geodätischen »schneller divergieren « läßt.

Schließen Sie, daß zwei Geodätische auf \mathbb{S}^n sich in Antipodenpunkten schneiden und zwei Geodätische auf \mathbb{H}^n sich höchstens einmal schneiden.

Exercise Sheet 6

due May 31st, 2012

Exercise 6.1. Consider the open unit disk in \mathbb{R}^2 , given in polar coordinates $\{(r,\varphi) \in [0; \infty[\times[0; 2\pi[\}, \text{but instead of the usual Euclidean metric } g_{\text{eucl.}} = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$, we consider the **Poincaré disk model** for \mathbb{H}^2 , that is

$$g = \frac{g_{\text{eucl.}}}{1 - r^2} = \frac{1}{1 - r^2} \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}.$$

- (i) Sketch ∂_r and ∂_{φ} and compute $|\partial_r|$ and $|\partial_{\varphi}|$.
- (ii) Compute $\nabla_{\partial_r}\partial_r$, $\nabla_{\partial_r}\partial_{\varphi}$, $\nabla_{\partial_{\varphi}}\partial_r$, $\nabla_{\partial_{\varphi}}\partial_{\varphi}$ and $\nabla_V W$ for $V=r\partial_r+r^2\partial_{\varphi}$ and $W=\varphi\partial_r+r\varphi\partial_{\varphi}$. Two of these derivatives coincide. Why?

Exercise 6.2. Consider the upper half plane $\{(x,y) \in \mathbb{R} \times]0; \infty[\}$ with the metric of the **Poincaré half-plane model** for \mathbb{H}^2 , namely $g = \frac{1}{y^2}g_{\text{eucl.}} = \frac{1}{y^2}(dx^2 + dy^2)$. Let γ be a constant-speed parametrisation of $\{(x_0,y) \mid y \in]0; \infty[\}$ for constant x_0 .

- (i) Sketch the situation and show that γ is a geodesic.
- (ii) Show that $J = \partial_x$ is a Jacobi field along γ .

Note that $|J|_g \to \infty$ for $y \to 0$. That means that two such geodesic for different values of x_0 , although they seem to run in "constant distance", spread out as y approaches 0 and tend to each other for large y.

Exercise 6.3. Let (M,g) be a Riemannian manifold with a geodesic $\gamma: I \to M$. A Jacobi field J along γ with $J \perp \dot{\gamma}$ everywhere is called a **normal** Jacobi field along γ . Show that $\ddot{J} + CJ = 0$ for any normal Jacobi field if (M,g) has constant sectional curvature $C \in \mathbb{R}$.

Exercise 6.4. Suppose r > 0. Show (quickly) that the ordinary differential equations $\ddot{u} + r^2 u = 0$ and $\ddot{v} - r^2 v$ with initial values u(0) = v(0) = 0 and $\dot{u}(0) = \dot{v}(0) = r$ have solutions

$$u(t) = \sin rt$$
 and $v(t) = \sinh rt$.

Now let J be a normal Jacobi field with J(0)=0. Show $|J(t)|_g=\lambda u(t)$ in case $C=r^2>0$ or $|J(t)|_g=\lambda v(t)$ in case $C=-r^2<0$. What is λ ?

This is the reason to say that "lower sectional curvature causes geodesics to diverge faster".

Conclude that two geodesics on \mathbb{S}^n intersect each other in antipodal points and two geodesics on \mathbb{H}^n meet at most once.